The Ramsey numbers of large trees versus wheels

نویسندگان

  • D. Li School of Management and Engineering‎, ‎Nanjing University‎, ‎Nanjing 210093‎, ‎P.R. China.
  • D. Zhu School of Economics and Management‎, ‎Southeast University‎, ‎Nanjing 210093‎, ‎P.R. China.
  • L. Zhang School of Management and Engineering‎, ‎Nanjing University‎, ‎Nanjing 210093‎, ‎P.R. China.
چکیده مقاله:

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the ramsey numbers of large trees versus wheels

for two given graphs g1 and g2, the ramseynumber r(g1,g2) is the smallest integer n such that for anygraph g of order n, either $g$ contains g1 or the complementof g contains g2. let tn denote a tree of order n andwm a wheel of order m+1. to the best of our knowledge, only r(tn,wm) with small wheels are known.in this paper, we show that r(tn,wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

The Ramsey numbers of stars versus wheels

For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest positive integer n such that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Sn denote a star of order n and Wm a wheel of order m+1. This paper shows that R(Sn, W6) = 2n+1 for n ≥ 3 and R(Sn, Wm ) = 3n − 2 for m odd and n ≥ m − 1 ≥ 2. © 2003 Elsevier Ltd. All rights reserved.

متن کامل

The Ramsey numbers of paths versus wheels

For two given graphsG1 andG2, the Ramsey numberR(G1,G2) is the smallest integer n such that for any graph G of order n, either G containsG1 or the complement of G containsG2. Let Pn denote a path of order n and Wm a wheel of order m+ 1. In this paper, we show that R(Pn,Wm)= 2n− 1 for m even and n m− 1 3 and R(Pn,Wm)= 3n− 2 for m odd and n m− 1 2. © 2004 Elsevier B.V. All rights reserved.

متن کامل

On Ramsey numbers for paths versus wheels

For two given graphs F and H, the Ramsey number R(F,H) is the smallest positive integer p such that for every graph G on p vertices the following holds: either G contains F as a subgraph or the complement of G contains H as a subgraph. In this paper, we study the Ramsey numbers R(Pn,Wm), where Pn is a path on n vertices and Wm is the graph obtained from a cycle on m vertices by adding a new ver...

متن کامل

The Ramsey Numbers of Paths Versus Wheels: a Complete Solution

Let G1 and G2 be two given graphs. The Ramsey number R(G1, G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or G contains a G2. We denote by Pn the path on n vertices and Wm the wheel on m + 1 vertices. Chen et al. and Zhang determined the values of R(Pn,Wm) when m 6 n + 1 and when n + 2 6 m 6 2n, respectively. In this paper we determine all the value...

متن کامل

Ramsey numbers of stars versus wheels of similar sizes

We study the Ramsey number R(Wm, Sn) for a star Sn on n vertices and a wheel Wm on m + 1 vertices. We show that the Ramsey number R(Wm, Sn)= 3n− 2 for n=m,m+ 1, and m+ 2, where m 7 and odd. In addition, we give the following lower bound for R(Wm, Sn) where m is even: R(Wm, Sn) 2n+ 1 for all n m 6. © 2004 Elsevier B.V. All rights reserved.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 42  شماره 4

صفحات  879- 880

تاریخ انتشار 2016-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023